#include
#include
#include
#include
main()
{
int testdev;
int i;
char buf[10];
testdev = open("/dev/test",O_RDWR);
if ( testdev == -1 )
{
printf("Cann't open file ");
exit(0);
}
read(testdev,buf,10);
for (i = 0; i < 10;i++)
printf("%d ",buf[i]);
close(testdev);
}
|
编译运行,看看是不是打印出全1 ?
以上只是一个简单的演示。真正实用的驱动程序要复杂的多,要处理如中断,DMA,I/O port等问题。这些才是真正的难点。请看下节,实际情况的处理。
三 设备驱动程序中的一些具体问题
1 I/O Port
和硬件打交道离不开I/O Port,老的ISA设备经常是占用实际的I/O端口,在linux下,操作系统没有对I/O口屏蔽,也就是说,任何驱动程序都可以对任意的I/O口操作,这样就很容易引起混乱。每个驱动程序应该自己避免误用端口。有两个重要的kernel函数可以保证驱动程序做到这一点。
1)check_region(int io_port, int off_set)
这个函数察看系统的I/O表,看是否有别的驱动程序占用某一段I/O口。
参数1:io端口的基地址, 参数2:io端口占用的范围。 返回值:0 没有占用, 非0,已经被占用。
2)request_region(int io_port, int off_set,char *devname)
如果这段I/O端口没有被占用,在我们的驱动程序中就可以使用它。在使用之前,必须向系统登记,以防止被其他程序占用。登记后,在/proc/ioports文件中可以看到你登记的io口。
参数1:io端口的基地址。 参数2:io端口占用的范围。 参数3:使用这段io地址的设备名。
在对I/O口登记后,就可以放心地用inb(), outb()之类的函来访问了。在一些pci设备中,I/O端口被映射到一段内存中去,要访问这些端口就相当于访问一段内存。经常性的,我们要获得一块内存的物理地址。在dos环境下,(之所以不说是dos操作系统是因为我认为DOS根本就不是一个操作系统,它实在是太简单,太不安全了)只要用段:偏移就可以了。在window95中,95ddk提供了一个vmm 调用 _MapLinearToPhys,用以把线性地址转化为物理地址。但在Linux中是怎样做的呢?
|