/* Are we prepared to handle this kernel fault? */ if ((fixup = search_exception_table(regs->eip)) != 0) { regs->eip = fixup; return; } ……………………… }
首先让我们来看看传给这个函数调用的两个参数:它们都是通过entry.S在堆栈中建立的(arch/i386/kernel/entry.S),参数regs指向保存在堆栈中的寄存器,error_code中存放着异常的出错码,具体的堆栈布局参见图一(堆栈的生成过程请参考《Linux内核源代码情景分析》一书)
该函数首先从CPU的控制寄存器CR2中获取出现缺页异常的虚拟地址。由于缺页异常处理程序需要处理的缺页异常类型很多,分支也很复杂。基于本文的主旨,我们只关心以下的几种内核缺页异常处理的情况:
1." 程序要访问的内核地址空间的内容不在内存中,先跳转到标号vmalloc_fault,如果当前访问的内容所对应的页目录项不在内存中,再跳转到标号no_context;
2. 缺页异常发生在中断或者内核线程中,跳转到标号no_context;
3. 程序在核心态运行时访问用户空间的数据,被访问的数据不在内存中
a) 出现异常的虚拟地址在进程的某个vma中,但是系统内存无法分配空闲页框(page frame),则先跳转到标号out_of_memory,再跳转到标号no_context;
b) 出现异常的虚拟地址不属于进程任一个vma,而且不属于堆栈扩展的范畴,则先跳转到标号bad_area,最终也是到达标号no_context。
从上面的这几种情况来看,我们关注的焦点最后集中到标号no_context处,即对函数search_exception_table的调用。这个函数的作用就是通过发生缺页异常的指令(regs->eip)在异常表(exception table)中寻找下一条可以继续运行的指令(fixup)。这里提到的异常表包含一些地址对,地址对中的前一个地址表示出现异常的指令的地址,后一个表示当前一个指令出现错误时,程序可以继续得以执行的修复地址。
如果这个查找操作成功的话,缺页异常处理程序将堆栈中的返回地址(regs->eip)修改成修复地址并返回,随后,发生异常的进程将按照fixup中安排好的指令继续执行下去。当然,如果无法找到与之匹配的修复地址,系统只有打印出出错信息并停止运作。
那么,这个所谓的修复地址又是如何生成的呢?是系统自动生成的吗?答案当然是否定的,这些修复指令都是编程人员通过as提供的扩展功能写进内核源码中的。下面我们就来分析一下其实现机制。
|